

Modulkatalog Elektrotechnik – Master of Engineering (M. Eng.)

Studienverlaufsübersicht

2. Semester			
	3. Semester	4. Semester	Vertiefungen
UFM88	D PWS81 D	M30 D	
Digitalisierung und ethische Verantwortung von Unternehmen	the Projektwerkstatt		Vertiefung 1: Nachrichtentechnik
Assignment 5	LP Assignment 5 LP		15 LP
IMA80	D ROB60 D		
Analysis und Numerik für Ingenieure	ir Maschinelles Lernen		Vertiefung 2: Robotik, Aktorik und Sensorik
Assignment 5	LP Assignment 5 LP		15 LP
SYE60	Q		
Systems Engineering			Vertiefung 3: Systems Engineering
Assignment 5 (Laborbericht)	9		15 LP
ELT61	О	Abschlussprüfung	
Elektrodynamik	Vertiefung		Vertiefung 4: KI im Engineering
Klausur 5	Ф		15 LP
ELT62	0		
Signalverarbeitung mit Labor	bor		Vertiefung 5: Elektrische Energietechnik
Assignment 5 (Laborbericht)	15 LP		15 LP
SWE65	D MTI80 D		
Software Engineering 1	Masterkolleg Technik und Informatik		Vertiefung 6: Management
Assignment 5	LP Assignment 5 LP	Masterarbeit (70%) + 30 LP Kolloquium (30%)	15 LP

Vertiefungen

	ment	٥	Į.	₽	٥	pun	4	٥	ŧ	9
	Nanage		agemen	5		gement echt	5		ns- und nageme	5
	Vertiefung 6: Management	DML88	Digital Management	Assignment	PER68	Changemanagement und Arbeitsrecht	Assignment	UFM75	Informations- und Wissensmanagement	Assignment
945		a		LP	Q	scher	LP	٥	onik	Ъ
Vortiofung E. Elobtrischo	echnik		Elektromechanische Energiewandlung	5		Simulation energietechnischer Systeme	5		Projekt Leistungselektronik	5
fund C.	Energietechnik	ELT83	ktromec	Klausur	ELT84	on energiete Systeme	Klausur	ELT85	t Leistun	Assignment
Vortic	E		8 4	Kla		Simulati	Kla		Projek	Assig
	eering	٥		٩	O		bor für			9
	Vertiefung 4: KI im Engineering		Digitalisierung und KI	5			Praxis Deep Learning mit Labor für	are		10
	g 4: KI in	KID80	alisierun	ment	KOM84		Learnir	Ingenieure		ment
	rtiefung	_	Digit	Assignment	×		axis Deeg			Assignment (1 aborbericht)
	N			a.	0		P.	٥		<u> </u>
tome	2		nent	5 L		gineerin	5 L		neering	5 L
2. Cv	Engineering	33	Risikomanagement		30	stem En	_	32	nts-Engi	_
Vortiofung 3: Suctome	Eng	RER83	Risikon	Klausur	SYE80	Vertiefung System Engineering	Assignment	RER82	Requirements-Engineering	Assignment
						Verti	∢		å	∢
Provide		٥		Ъ	٥					9
hotily	sorik		¥	5			Shortic	VIII OOO		10
04 3. Do	und Sensori	ROB82	Robotik	nment	ROB83		Jahor Dohotiv	Land		nment sericht)
Vortiofung 3: Bohotik Abtorik				Assignment						Assignment (1 aborbericht)
		٥		9	0	keit	9	٥		3
	Vertiefung 1: Nachrichtentechnik		thnik	5		Elektromagnetische Verträglichkeit	5		Projekt Analoge und Digitale Signalverarbeitung	2
	Vachrich	80	Hochfrequenztechnik		31	ische Ve		82	ekt Analoge und Dig Signalverarbeitung	
	fung 1: I	ELT80	Hochfre	Klausur	ELT81	omagnet	Klausur	ELT82	jekt Ana. Signalv	Assignment
	Vertie					Elektro			Pro	∢

AUT40 Automatisierungstechnik

	AU140 Automatisierungstechnik
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls AUT40 können die Studierenden Systeme mit verschiedenen Steuerungen zielgerichtet beeinflussen.
	Sie können einen Steuerungsentwurf problemorientiert erarbeiten und beherrschen Grundkenntnisse der SPS-Programmierung gemäß IEC 1131.
	Weiterhin können sie geeignete Steuerungsverfahren und Steuerungsgeräte auswählen.
	Die Studierenden kennen Automatisierungssysteme in der Gesamtheit und können sie in das Unternehmen einordnen.
	Zudem kennen sie Struktur und Aufbau von Automatisierungssystemen und die Auswirkung von Automatisierung auf Mensch und Umwelt.
	Sie kennen Informationsprozesse der Automatisierung und können sie einordnen. Desweiteren verstehen sie Prinzipien der computergestützten Informationsverarbeitung in der Automatisierungstechnik.
	Die Studierenden verstehen und abstrahieren Aufgaben der Leittechnik und strukturieren Projekte der Automatisierungstechnik in Einzelaufgaber und können diese abwickeln.
	Steuerungsarten, Schaltalgebra und SPS
Inhalt	Einführung in die Automatisierungstechnik
	Grundlagen der Schaltalgebra
	Speicherprogrammierbare Steuerungen
	Kommunikation zwischen Automatisierungssystemen
	Gebräuchliche Feldbusse
	Das OSI-Referenzmodell
	Physikalische Übertragungseigenschaften: Die unteren Schichten des OSI-Modells
	Anwendungsnahe Eigenschaften von Feldbussen
	Systeme und Komponenten der Automatisierung
	Grundbegriffe
	Aufbau von Automatisierungssystemen
	Ankopplung der Sensoren und Aktoren an Automatisierungssysteme
	Prozessvisualisierungssysteme
	SPS-Programmierung nach IEC-61131
	Strukturierte Programmierung in der Automatisierungstechnik
	Verknüpfungssteuerungen
	Entwurf von Schaltnetzen
	Entwurf von Schaltwerken
	Einzelsteuerfunktionen
	Analogwertverarbeitung
	Regelungen
	Ablaufsteuerungen
	Aufhau van Sahrittlattan

Aufbau von Schrittketten

Entwurf und Analyse von Schrittketten

Zusammenspiel zwischen Ablauf- und Verknüpfungssteuerungen

Schutzfunktionen und Betriebsarten

Steuerungsentwurf für parallele Prozessabläufe

Prozess- und Betriebsleitsysteme

Bedienen und Beobachten

Aufbau von Prozessleitsystemen

Prozess- und anlagentechnisches Abbild

Betriebsdateninformationssysteme

Produktionsplanung und -steuerung

Voraussetzungen	Ingenieurwissenschaftliche Mathematikkenntnisse, Grundlagen der Elektrotechnik und Regelungstechnik
Modulbausteine	CoDeSys Simulationsprogramm (Download AKAD Campus inkl. Anleitung "Erste Schritte", Handbuch, Vorlagen und Beispiele)
	STT101 Studienbrief Steuerungsarten, Schaltalgebra und SPS mit Onlineübung
	STT102 Studienbrief Kommunikation zwischen Automatisierungssystemen
	AUT101 Studienbrief Systeme und Komponenten der Automatisierung mit Onlineübung
	AUT102 Studienbrief Verknüpfungssteuerungen mit Onlineübung
	AUT103 Studienbrief Ablaufsteuerungen mit Onlineübung
	AUT104 Studienbrief Prozess- und Betriebsleitsysteme mit Onlineübung
	Online-Tutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)

125 Stunden, 5 Leistungspunkte

Deutsch

Patrick Stepke

Lernaufwand

Studienleiter

Sprache

DML88 Digital Management

Kompetenzzuordnung	Systemische Fertigkeiten
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul DML88 verfügen die Studierenden über systemische Kompetenz hinsichtlich der Führung eine digitalisierten Unternehmens.
	Weiterhin erwerben sie die Fähigkeit zur Abschätzung und Bewertung der Wirkung wesentlicher Problemfelder des Digital Business in Controlling, externem Rechnungswesen und Steuern.
	Weiterhin führen sie aus der Position der Führungskraft Verhandlungen ir Bezug auf Digital Business bei Eigen- und Fremdkapitalgebern unter Nutzung authentischer datengetriebener Präsentationen.
	Darüber hinaus können sie in Restrukturierungen von Digital Business Erfolgspotenzial erhöhend agieren.
	Die Studierenden sind in der Lage, Problemfelder der Unternehmensführung im Rahmen der Digitalisierung bzw. bei digitalisierten Unternehmen kritisch zu reflektieren.
Inhalt	Management für Digitalprojekte
IIIIait	Strategisches Management (VRIO, Spinnovation etc.)
	Evidence based Management
	Digital Networking & Personal Branding Controlling, Rechnungswesen und Steuern bei Digital Business
	Management Accounting 4.0
	Financial Accounting 4.0
	Tax Accounting 4.0
	Datenvisualisierung und Daten Storytelling aus Managementperspektive
	Data Visualisation & Data Storytelling
	Finanzierung und Investment in Digital Business
	Krisenmanagement von Digital Business
	Management in Zeiten der sichtbaren Krise: Restrukturierung von Digital Business
	Integration von Praxiserfahrung und des ersten akademischen Abschlusses
	Die weiterführende Integration bereits vorhandener Praxiserfahrung, die durch das Erststudium erworbenen akademischen Kenntnisse und Kompetenzen sowie die kritische Reflexion aktueller Praxiserfahrungen wird im Modul durch den Kompetenznachweis Assignment (Bezug zur Empirie/Fallbeispiel/Fallstudie) gewährleistet und unterstützt.
Voraussetzungen	Keine.
Modulbausteine	DML828 Studienbrief Digital Management mit Onlineübung
	DML821 Studienbrief Digital Networking & Personal Branding mit Onlineübung
	DML822 Studienbrief Controlling, Rechnungswesen und Steuern bei Digital Business mit Onlinebeübung

DML823 Studienbrief Datenvisualisierung und Daten Storytelling aus Managementperspektive mit **Onlineübung**

DML824 Studienbrief Krisenmanagement mithilfe von Digital Business mit **Onlineübung**

Onlineseminar (2 Stunden)

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch / Englisch
Studienleiter	Prof. Dr. Markus Grottke

ELT60 Elektrostatik

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul ELT60 sind die Studierenden in der Lage, sich komplexen und anspruchsvollen Problemstellungen der fortgeschrittenen Elektrotechnik zu stellen.
	Hierzu werden vertiefende Kompetenzen aufgebaut in den Bereichen Vektoranalysis, elektrische Feldverteilungen und -charakteristika einschließlich einiger Kraftgesetze sowie der Magnetostatik.
Inhalt	Elektrodynamik
	Mathematische Grundlagen
	Maxwellgleichungen
	Elektrostatik
	Magnetostatik
Voraussetzungen	Keine.
Modulbausteine	PHY211 Studienbrief Einführung in die theoretische Elektrodynamik mit Onlineübung
	Onlineseminar (2 Stunden)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. DrIng. Matthias Riege

ELT61 Elektrodynamik

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul ELT61 sind die Studierenden in der Lage, elektrische und magnetische Felder sowie ihre gegenseitige Wechselwirkung zu verstehen und mathematisch zu beschreiben.
	Sie können diese Kenntnisse und Fähigkeiten dann anwenden, um feldspezifische Problemstellungen auf elektrotechnischen Teilgebieten wie etwa elektrische Maschinen oder Hochfrequenztechnik zu bearbeiten.
Inhalt	Der Feldbegriff
	Vektoranalysis (Koordinatensysteme, Divergenz, Rotation, Gradient, Nabla- und Laplace-Operator, mathematische Beziehungen)
	Maxwell-Gleichungen
	Magnetisches Potential, Vektorpotential, Feldlinien Laplace-, Poisson- und Helmholz Gleichung
	Kräfte im elektrischen und magnetischen Feld
	Gekoppelte magnetische Kreise, innere und äußere Induktivität
	Gesetz von Biot-Savard, Induktivitäts- und Kapazitätskoeffizienten
	Poyting Vektor
	Stromverdrängung
	Wirbelströme
	Elektromagnetische Wellen
	Telegraphengleichungen
	Numerische Feldberechnung
Voraussetzungen	Kenntnisse in höherer Mathematik, insbesondere Differentialgleichungen und in Grundlagen der Elektrotechnik
Modulbausteine	ELT611 Studienbrief Elektrodynamik mit Onlineübung
	Onlineseminar (2 Stunden)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Ing. Helmuth Biechl

ELT62 Signalverarbeitung mit Labor

	EL102 Signalverarbeitung init Labor
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul ELT62 sind die Studierenden in der Lage, sich komplexen praktischen Aufgaben der analogen und digitalen Signalverarbeitung zu stellen.
	Hierzu werden im Kontext jeweils anspruchsvoller Anwendungen vertiefende Kompetenzen der verschiedenen Bereiche der analogen und digitalen Signalverarbeitung, Systeme und Filter aufgebaut.
	Die praktische Umsetzung wird in einem virtuellen Labor realitätsnah simuliert.
Inhalt	Analoge Signalverarbeitung
iman	Eigenschafen analoger Signale
	Analoge Filter (RC, RL, RLC-Schaltungen)
	Fourier- und Laplace-Transformation
	Signalübertragungs- und Rauschverhalten
	Vertiefende Klassifizierung von Signalen
	Fourierreihenentwicklung
	Analoge Systeme
	Klassifizierung von Systemen
	bImpuls- und Stoßantwort
	requenzgang und Übertragungsfunktion
	Kausalität
	Systemverhalten im Zeitbereich
	Analoge Filter
	Frequenzgangapproximation und -transformation
	Praktischer Aufbau aktiver Analogfilter
	Digitale Signalverarbeitung
	Eigenschafen digitaler Signale
	Abtasttheorem und Aliasing
	Diskrete Fourier-Transformation (DFT)
	Schnelle Fourier-Transformation (FFT)
	Z-Transformation
	Diskrete Faltung
	Digitale Systeme
	Vertiefende Betrachtung und Hintergrund der Differenzengleichung
	Z-Übertragungsfunktion
	Filtertopologien
	Digitale Filter
	IIR- und FIR-Filter
	Entwurfsmethoden für FIR-Filter: Fenstermethode, Parks-McClellan
	Entwurfsmethoden für IIR-Filter: Bilineartransformation, Impulse Invarian Method
	Filtercharakteristiken und Stabilitätsanalyse
	Implementierung und Anwendungen
	Signalverarbeitung in Python unter Verwendung von NumPy und SciPy
	land and and Common and a Filliam in Posth and

Implementierung von Filtern in Python

Anwendungen in der Audio- und Videosignalverarbeitung **Virtuelle Laborübungen**

Messungen und Analysen analoger und digitaler Filter in Python Skizzierung eines Signalverarbeitungssystems

Voraussetzungen	Grundlagen der Elektrotechnik
Modulbausteine	ELT621 Studienbrief Analoge Signalverarbeitung mit Onlineübung ELT622 Studienbrief Digitale Signalverarbeitung und Anwendung in Python mit Onlineübung
	ABTE215-EL E-Book Meyer: Signalverarbeitung - Analoge und digitale Signale, Systeme und Filter
	ABTE214-EL E-Book Schnellstart Python - Ein Einstieg ins Programmieren für MINT-Studierende
	E-Book Unpingco: Python for Signal Processing
	E-Book Johansson: Numerical Python - Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
	Labor (2 Tage)
Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Frank Dopatka

ELT80 Hochfrequenztechnik

	EL 180 Hochfrequenztechnik
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul ELT80 sind die Studierenden in der Lage, ein breites Spektrum an Fähigkeiten im Bereich der Hochfrequenztechnik anzuwenden.
	Sie haben ein solides Verständnis für die Grundlagen der Hochfrequenztechnik entwickelt und können die wichtigen Konzepte in diesem Bereich erklären.
	Weiterhin verstehen sie die Ausbreitung von Wellen auf Leitungen und können die relevanten Parameter analysieren, um eine effiziente Übertragung sicherzustellen.
	Die Studierenden können Impedanztransformationen durchführen und Smith-Diagramme verwenden, um komplexe Impedanzanpassungen zu visualisieren und zu optimieren.
	Sie sind mit der Natur ebener Wellen vertraut und können verschiedene Polarisationstypen identifizieren und analysieren.
	Darüber hinaus verstehen sie die Funktionsweise linearer und Aperturantennen und können deren Eigenschaften und Anwendungen analysieren. Sie können Hohlleitersysteme analysieren und verstehen deren Eigenschaften, Anwendungen und Grenzen.
	Insgesamt sind die Studierenden gut gerüstet, um komplexe Probleme im Bereich der Hochfrequenztechnik zu verstehen, zu analysieren und Lösungen dafür zu entwickeln.
	Sie können theoretische Konzepte auf praktische Anwendungen anwenden und sind bereit, sich weiter in diesem Fachgebiet zu vertiefen.
Inhalt	Einführung
	Wellenausbreitung auf Leitungen
	Impedanztransformation, Smith-Diagramm
	Ebene Wellen, Polarisation
	Lineare Antennen
	Aperturantennen
	Hohlleitersysteme
	Rauschen
	Mehrleitersysteme
	Hochfrequenzfilter Mischer
	Modulationsverfahren
Voraussetzungen	Grundlagen der Elektrotechnik, Grundlagen der Ingenieursmathematik
Modulbausteine	ELT804 Studienbrief Einführung in die Hochfrequenztechnik mit
danadatoiiio	Onlineübung
	ELT805 Studienbrief Antennen mit Onlineübung
	ELT806 Studienbrief Modulationsverfahren mit Onlineübung
	Onlineseminar (2 Stunden)

Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter Prof. DrIng. Martin Heine	

ELT81 Elektromagnetische Verträglichkeit

Kom	neten	zzuor	dnuna
110111	DCLCII	4 2uu	ullullu

Wissensvertiefung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul ELT81 sind die Studierenden in der Lage, eine umfassende Grundlage im Bereich der elektromagnetischen Verträglichkeit (EMV) anzuwenden.

Sie können die grundlegenden Konzepte elektromagnetischer Wellen und die Maxwell-Gleichungen auf praktische EMV-Probleme anwenden und verstehen die Bedeutung der Pegelrechnung für die EMV-Analyse.

Die Studierenden sind in der Lage, verschiedene Kopplungsmechanismen zu erkennen und zu analysieren sowie geeignete Maßnahmen zur Minimierung von Störquellenkoppelungen zu ergreifen.

Sie können die spektrale Charakteristik typischer Störquellen bewerten und entsprechende Gegenmaßnahmen entwickeln.

Insgesamt sind die Studierenden nun befähigt, EMV-Probleme zu analysieren, zu bewerten und effektive Lösungen zu entwickeln, sowohl in theoretischer als auch in praktischer Hinsicht.

Inhalt

Einführung Grundlagen

Elektromagnetische Wellen

Maxwell Gleichungen

Pegelrechnung

Koppelmechanismen

Grundsätzliche Kopplungsmechanismen

Kopplungswege

Spektralcharakteristik typischer Störquellen

Messtechnische Grundlagen der EMV

Messtechnik / Prüfanforderungen Störaussendung

Messtechnik / Prüfanforderungen Störfestigkeit

Messen der EMV

CE-Zeichen

Konformitätsbewertung der EMV

EMV Messverfahren

Störfestigkeitsprüfungen

Störaussendung

Gebräuchliche EMV-Messeinrichtungen im Hochfrequenzbereich

Freifeld

Absorberkammer

GTEM- Zelle

Modenverwirbelungskammer

EMV Entstörungsmaßnahmen

Abhilfemaßnahmen

Elementare Filterschaltungen

Platinenlayout

Messungen mit dem Spektrumanalysator

Spektrumanalysator Pegeldarstellbereich

Praktische Hinweise

Entstörungskomponenten Schirm- und Dämpfungsmaterialien Regeln für den Leiterplattenwurf

Weitere Regeln

Voraussetzungen	Grundlagen der Elektrotechnik, Grundlagen der Ingenieursmathematik
Modulbausteine	ELT811 Studienbrief Elektromagnetische Störungen - Entstehung, Übertragungsstrecken, Maßnahmen mit Onlineübung
	ELT812 Studienbrief Messen der Elektromagnetischen Verträglichkeit mit Onlineübung
	Onlineseminar (2 Stunden)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. DrIng. Martin Heine

ELT82 Projekt Analoge und Digitale Signalverarbeitung

Competenzzuordnung	Wissensverbreiterung	
Competenzziele	Die bereits vorhandenen Grundkenntnisse analoger und digitaler Signalverarbeitung sowie des Entwurfs entsprechender Systeme und Filter liegen zu Beginn dieses Moduls in eher theoretisch-formaler Form vor.	
	Nach erfolgreicher Teilnahme am Modul ELT82 sind die Studierenden nun in der Lage, komplexe Systeme und Filter sowohl mit endlicher, als auch mit unendlicher Impulsantwort im komplexen praktischen Kontext zu entwerfen und zu testen.	
	Sie sind zudem in der Lage, theoretische Zusammenhänge stochastischer Einflussquellen durch Simulationen und Beispielrechnungen zu ermitteln und auszuwerten.	
nhalt	Spezifische Einführung in MATLAB	
	Elementare zeitdiskrete Signale	
	Diskrete Fourier-Transformation (DFT)	
	Kurzzeit-Spektralanalyse eines analogen Signals und Fensterung	
	Spektrogramm zur Zeit-Frequenz-Analyse anhand von Chirp- und Audiosignalen	
	Schnelle Fourier-Transformation (FFT)	
	Lineare zeitinvariante Systeme FIR-Systeme und Filterentwurf IIR-Systeme und Filterentwurf	
	Stochastische Signale	
	Analog-Digital-Umsetzung	
	Analyse und Bewertung des tatsächlichen Fehlers durch Quantisierung der Koeffizienten bei FIR-Filtern	
	Quantisierte Arithmetik realer digitaler Filter mit Abschätzung kleiner und großer Grenzzyklen sowie Erklärung des inneren Rauschens	
oraussetzungen	Grundlagen der Elektrotechnik, Grundkenntnisse des Entwurfs analoger und digitaler Signalverarbeitung, Systeme und Filter	
lodulbausteine	ELT821 Studienbrief Signalverarbeitung mit MATLab mit Onlineübung ABTE213-EL E-Book Werner: Digitale Signalverarbeitung mit MATLAB Labor (2 Tage)	
Competenznachweis	Assignment (Laborbericht)	
ernaufwand	125 Stunden, 5 Leistungspunkte	
prache	Deutsch	
prache		

Studienleiter

Prof. Dr. Frank Dopatka

ELT83 Elektromechanische Energiewandlung

Kompetenzzuordnung

Wissensvertiefung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul ELT83 sind die Studierenden in der Lage, die physikalisch-technische Wirkungsweise der wichtigsten elektromechanischen Energiewandler zu verstehen, sie mathematisch für den stationären Fall zu beschreiben und die Abhängigkeit des Betriebsverhaltens von Systemparametern sowie diese selbst genau zu kennen, so dass je nach Einsatzzweck eine Optimierung erfolgen kann.

Ein wesentliches Kompetenzziel ist die Fähigkeit, elektromechanische Energiewandler mathematisch zu modellieren, so dass man sich mit dieser Fähigkeit mit weiteren, im Modul nicht behandelten Wandlern vertraut machen und diese analytisch behandeln kann.

Dabei wird besonderer Wert auf das Verständnis gelegt, welche Effekte bei der Modellierung je nach Einsatz, Design, Betriebsweise und erforderlicher Genauigkeit (Modellgüte) vernachlässigt werden können bzw. Berücksichtigung finden müssen.

Inhalt

Literaturempfehlungen

Einführung und Abgrenzung des Fachgebietes

Grundlagen zur mathematischen Modellbildung und zum Betrieb elektromechanischer Energiewandler (Stabilität im Arbeitspunkt, Erwärmung elektromechanischer Energiewandler und Überlastbarkeit, Strombelag, eindimensionale Berechnung des magnetischen Luftspaltfeldes, Carter-Faktoren, Sehnungs- und Zonenfaktor, Berechnung des elektromagnetisch entwickelten Drehmoments, Nutstreuung, Stromverdrängung)

Gleichstrommaschine (Aufbau und Wirkungsweise, Ankerwicklungsarten, magnetische Felder, Kommutierung, Wendepol- und Compoundwicklung, fremderregte Maschine, Nebenschlussmaschine, Reihenschlussmaschine, Elektronikmotor, Gleichungen für stationären Betrieb, Drehzahlstellung und Anlassverfahren)

Wechselstromkommutatormotor (konstruktiver Aufbau, Systemgleichungen, Betriebskennlinien)

Drehstromasynchronmaschinen (Drehfeld, Drehstromwicklung, Schlupf, Oberwellen, Sehnung, Spulengruppe, Induktivitäten, Auslegung, mathematische Beschreibung des stationären Betriebsverhaltens, Zeigerdiagramm, Drehzahlstellung und Anlassverfahren, Ossana-Kreis, Besonderheiten der Kurzschlussläufermaschine)

Synchronmaschinen (Aufbau und prinzipielle Wirkungsweise, Vollpolmaschine, Schenkelpolmaschine, Permanentmagnet-Läufer, Funktion der Dämpferwicklung, Betriebsarten, mathematische Beschreibung des stationären Betriebsverhaltens der Vollpolmaschine, Stabilität, Leerlauf- und Kurzschlusskennlinie, Ortskurve des Statorstroms, V-Kennlinien, Synchronisation, Schwingungsverhalten)

Rechenbeispiele zu den verschiedenen Kapiteln

Voraussetzungen

Grundgleichungen des elektrischen und magnetischen Feldes, komplexe Rechnung in der Wechselstromtechnik, Zeigerdiagramme, Berechnung einfacher elektrischer Netzwerke, Betriebsverhalten des Einphasen-Transformators, gewöhnliche Differentialgleichungen

Modulbausteine

ELT831 Studienbrief Elektromechanische Energiewandlung I mit

Onlineübung

ELT832 Studienbrief Elektromechanische Energiewandlung II mit

Onlineübung

Onlineseminar (2 Stunden) Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Ing. Helmuth Biechl

ELT84 Simulation energietechnischer Systeme

Kompetenzzuordnung

Wissensvertiefung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul ELT84 sind die Studierenden in der Lage, die mathematischen Grundlagen der numerischen Integration nichtlinearer Zustandsdifferentialgleichungssysteme zu verstehen und anzuwenden.

Auf die verschiedenen Integrationsalgorithmen, ihre Besonderheiten sowie auf optimale Integrationsschrittweite, Fehler bei der Integration und numerische Stabilität wird ausführlich eingegangen.

Der Studierende kennt den Aufbau eines Simulationsprogramms und ist in der Lage in einer beliebigen Programmiersprache ein eigenes Simulationsprogramm zu erstellen.

Im zweiten Teil wird auf die mathematische Modellierung energietechnischer Komponenten wie Transformator, Gleichstrommaschine, Asynchronmaschine, Synchronmaschine, Leistungselektronik, und ihre Kopplung eingegangen, Auch Regelkreise können nachgebildet werden.

Somit erlangt der Studierende umfangreiches Detailwissen, wie das dynamische Betriebsverhalten energietechnischer Systeme wie zum Beispiel elektrische Antriebe sowohl im ungestörten als auch gestörten Betrieb analysiert und optimiert werden können.

Simulation ist heute ein Standardinstrument für Design, Optimierung und Analyse energietechnischer Systeme, mit Anwendung insbesondere bei Prototypen und Großanlagen und gehört zum elementaren Wissen von Ingenieuren, die in diesem Bereich in Planung, Entwicklung und Betrieb tätig sind.

Inhalt

Grundlagen der Simulationstechnik

Zustandsbeschreibung dynamischer Systeme

Zustandsvektor und Zustandsraum

Herleitung von Zustandsgleichungen aus Differentialgleichungen höherer Ordnung

Zustandsgleichungen linearer Systeme

Zusammenhang zwischen Übertragungsfunktion und

Zustandsgleichungen

Prinzip der numerischen Integration von Zustandsgleichungen

Klassifizierung von Integrationsalgorithmen

verschiedene Integrationsalgorithmen

Fehlerordnung

Integration n-dimensionaler Zustandsgleichungen

numerische Stabilität

Mathematische Modellierung energietechnischer Systeme

Fremderregte Gleichstrommaschine mit und ohne magnetische Sättigung

Einphasen- und Drehstromtransformator

Drehstromasynchronmaschine

Park- und Clarke-Transformation

Synchronmaschine

Leistungselektronik

mathematische Kopplung von Teilsystemen

kommerzielle Simulationssoftware

Voraussetzungen	Grundkenntnisse über elektrische Maschinen, Leistungselektronik und Regelungstechnik.
	Kenntnisse auf dem Gebiet der gewöhnlichen Differentialgleichungen.
Modulbausteine	ELT841 Studienbrief Simulation energietechnischer Systeme mit Onlineübung
	Onlineseminar (2 Stunden)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Ing. Helmuth Biechl
	•

ELT85 Projekt Leistungselektronik

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul ELT85 sind die Studierenden in der Lage, ein breites Spektrum an Fähigkeiten in diesem Fachgebiet anzuwenden.

Sie haben ein solides Verständnis für die Grundlagen der Leistungselektronik entwickelt und verstehen die Bedeutung dieses Bereichs in verschiedenen Anwendungen.

Weiterhin sind sie vertraut mit einer Vielzahl von Bauelementen, darunter Dioden, Bipolar-Transistoren, Feldeffekt-Transistoren (MOSFETs, JFETs), Thyristoren, Diacs, Triacs und IGBTs.

Sie verstehen die Struktur, Funktionsweise und Anwendungsmöglichkeiten dieser Bauelemente.

Die Studierenden können parasitäre Effekte in Leistungselektronikschaltungen identifizieren und analysieren.

Sie sind in der Lage, das Wärmemanagement in

Leistungselektroniksystemen zu verstehen und zu optimieren.

Dies umfasst die Berechnung von thermischen Widerständen und Kapazitäten, die Analyse von Temperaturverläufen und die Auslegung effektiver Kühlkonzepte.

Insgesamt sind die Studierenden gut gerüstet, um komplexe Herausforderungen im Bereich der Leistungselektronik zu verstehen, zu analysieren und Lösungen dafür zu entwickeln.

Sie können theoretische Konzepte auf praktische Anwendungen anwenden und sind bereit, sich weiter in diesem Fachgebiet zu vertiefen.

Inhalt

Einleitung

Bauelemente für die Leistungselektronik

Dioden

Bipolar-Transistor

Bipolarer Leistungstransistor

Feldeffekt-Transistor (MOSFET, JFET)

Lateraler DMOS (LDMOS) Vertikaler DMOS (VDMOS)

IGBT

Aufbau- und Verbindungstechnik

Thyristor Diac

Triac

Parasitäre Effekte

Parasitäre Transistoren

Latch-up Effekt

Hot-Carrier-Degradation-Effects

Punch Through

Time-dependent gate oxide breakdown

Wärmemanagement

Berechnung von Temperaturverläufen

Auslegung von Kühlkonzepten

Stromrichterschaltungen

Mittelpunktschaltung
Wechselwegschaltung
Brückenschaltung
Wechselstromschaltungen
Drehstromschaltungen

Anwendungen

Spannungsversorgungen

Hochspannung-Gleichstrom-Übertragung (HGÜ)

Dimmer

Voraussetzungen	Grundlagen der Elektrotechnik
Modulbausteine	ELT851 Studienbrief Leistungselektronische Bauelemente und ihre Anwendungen mit Onlineübung Onlineseminar (2 Stunden)
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. DrIng. Martin Heine

Analysis und Numerik für IMA80 Ingenieure

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Nach erfolgreichem Abschluss des Moduls IMA60 vertiefen die Studierenden die Grundlagen der Differential- und Integralrechnung und erweitern sie auf die Differentialrechnung mehrerer Veränderlicher. Weiterhin lernen sie Fourierreihen kennen und wenden diese an.

Überdies lernen die Studierenden Differentialgleichungen kennen und setzen diese für praktische Probleme um.

Sie kennen und beurteilen die Grundfertigkeiten im Umgang mit numerischen Standardwerkzeugen sowie wenden diese an.

Die Studierenden beherrschen die Grundzüge der technischen

Programmiersprache MATLAB und setzen diese Kenntnisse zur Lösung

mathematischer, physikalischer und insbesondere

ingenieurwissenschaftlicher Aufgaben ein und können sie beurteilen.

Inhalt

Differentialrechnung

Rechenregeln und höhere Ableitungen

Anwendungen auf Splines

Krümmuna

Integralrechnung

Stammfunktion

Partielle Integration

Bestimmte Integrale

Bogenlänge

Kettenlinie

Fourierreihen

Diskrete Fourierreihen

Differentialrechnung in mehreren Variablen

Partielle Ableitung

Jakobi-Matrix

Tangentialebenen

Gradient

Differentialgleichungen

Differentialgleichungen erster Ordnung

Lösungsverfahren von Differentialgleichungen

Lineare Differentialgleichungen

Systeme von Differentialgleichungen

Einführung in MATLAB

Mathematikprogramme in den Ingenieurwissenschaften

Einstieg in MATLAB

Script-Dateien und Funktionen

Kontrollstrukturen

Einfache Benutzer-Interfaces (GUI)

Einführung in Simulink

Bedeutung von MATLAB für die Praxis

Numerische Mathematik mit MATLAB

Besonderheiten der numerischen Mathematik Computerarithmetik und Fehleranalyse Lösung von linearen Gleichungssystemen Lösung von nichtlinearen Gleichungen Interpolation und Approximation Numerische Integration

Voraussetzungen	Keine.
Modulbausteine	ABTE103-EL Fachbuch Papula Mathematik für Ingenieure und Naturwissenschaftler Band 2
	ABTE161-EL Fachbuch Papula Mathematik für Ingenieure und Naturwissenschaftler Band 3
	IMA801-BH Begleitheft zum Fachbuch Papula
	IMA501 Studienbrief Einführung in MATLAB mit Onlineübung
	IMA502 Studienbrief Numerische Mathematik mit MATLAB mit Onlineübung
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Rainer Berkemer

KID80 Digitalisierung und KI

	111200 Digitaliolorarig and 111
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls KID80 kennen und beurteilen die Studierenden die Problemstellung der Digitalisierung und KI im Ingenieurbereich und speziell auch im Maschinenbau.
	Sie lernen wichtige Konzepte, die mit der Digitalisierung eihergehen wie NoSQL Datenbanken, digitale Daten und deren Aufbereitung sowie Umsetzung.
	Sie kennen die Theorie und Schwierigkeiten der Digitalisierung und den Einsatz von KI-Techniken.
Inhalt	KI in der Industrie
imat	Einführung in die Digitalisierung und KI
	Daten in der Industrie
	Anwendungen in der Industrie
	Verarbeitung der Daten
	KI und Patente
	Security, Vertrauen und KI
	Digitalisierung souverän gestalten
	Digitale Souveränität Merkmale und Trends
	Kompetenzentwicklung für Maschinelles Lernen
	Rechtliche Aspekte
	Digitale Transformation im Maschinen- und Anlagenbau
	KI und NoSQL-Systeme
	Ausgewählte Konzepte von NoSQL-Systemen
	Das Map/Reduce Framework CAP Theorem
	Verschiedene Konsistenzmodelle
	Zeitmessung in verteilten Systemen (Global Clock Problem)
	Concurrency-Control
	REST-Framework
	Ausgewählte NoSQL-Datenbanken
	Column Store
	Document Store
	Key/Value-Datenbanken
	Graphendatenbanken
Voraussetzungen	Kenntnisse von Datenbanken
Modulbausteine	Fachbuch R.Weber, Peter Seeberg; Tok: KI in der Industrie
	KID801-BH Begleitheft zum Fachbuch KI in der Industrie mit Onlineübung
	Fachbuch Ernst A. Hartmann; Digitalisierung souverän gestalten, Springer Vieweg 2021
	ABTE029-EL E-Book Edlich, Friedland, Hampe, Brauer: NoSQL – Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken
	DBA501-BH Begleitheft Die Welt der NoSQL-Datenbanken mit Onlineübung

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. DrIng. Matthias Riege

	KLR62 Rechnungswesen kompakt
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme des Moduls KLR62 erarbeiten sich die Studierenden die Struktur des internen und externen Rechnungswesens vor dem Hintergrund von Rahmenbedingungen und setzen diese bei unvollkommenem Informationsstand in situationsgerechte Praxislösunger um.
	Sie leiten aus den Leistungsprozessen im Unternehmen eine aussagefähige Kosten- und Leistungsrechnung der Struktur nach ab (Bildung von Kostenstellen und Kostenträgern).
	Weiterhin führen sie eine Ist-Kostenrechnung beispielhaft durch und kalkulieren Produkte.
Inhalt	Grundlagen der doppelten Buchführung
	Grundlagen der Buchführung
	Von der Inventur zur Bilanz
	Die Bestandsrechnung
	Die Erfolgsrechnung
	Der zusammengefasste Buchungsablauf
	Geschäftsverkehr und Jahresabschluss
	Konten des Zahlungsverkehrs
	Warenverkehr
	Kontokorrentkonten
	Bewegliches Anlagevermögen und Abschreibungen
	Steuern der Unternehmung und des Unternehmers
	Buchungen im Privatbereich des Einzelunternehmens Jahresabschluss
	Kostentheorie und Grundbegriffe der Kosten- und Leistungsrechnung
	Die Kosten- und Leistungsrechnung als Teilgebiet des betrieblichen

Rechnungswesens

Grundbegriffe des Rechnungswesens

Kostentheoretische Grundlagen

Bestandteile und Aufbau der Kosten- und Leistungsrechnung

Überblick über die Kostenrechnungssysteme

Grundlegende Probleme der Kosten- und Leistungsrechnung

Kostenartenrechnung

Die Aufgaben der Kostenartenrechnung und die Abgrenzung von der Finanzbuchhaltung

Die Bildung der Kostenarten

Die Ermittlung einzelner Kostenarten

Kostenstellenrechnung

Die Aufgaben der Kostenstellenrechnung

Die Gliederung des Betriebes in Kostenstellen

Kostenstellenrechnung auf Vollkostenbasis

Die Notwendigkeit einer Kostenstellenrechnung auf Teilkostenbasis

Innerbetriebliche Leistungsverrechnung

Kostenträgerstückrechnung

Die Kostenträger

Die Aufgaben der Kalkulation

Kalkulationsbegriffe

Der Zusammenhang zwischen Kalkulationsverfahren und Fertigungsverfahren

Kalkulationsverfahren in der Vollkostenrechnung

Die Teilkostenkalkulation

Voraussetzungen	Grundlagen der allgemeinen Betriebswirtschaftslehre
Modulbausteine	BFG401 Studienbrief Grundlagen der doppelten Buchführung mit Onlineübung (optional)
	BFG402 Studienbrief Geschäftsverkehr und Jahresabschluss mit Onlineübung (optional)
	KLR207 Studienbrief Kostentheorie und Grundbegriffe der Kosten- und Leistungsrechnung mit Onlineübung
	KLR208 Studienbrief Kostenartenrechnung mit Onlineübung
	KLR209 Studienbrief Kostenstellenrechnung mit Onlineübung
	KLR210 Studienbrief Kostenträgerstückrechnung mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Peter Mühlemeyer

KOM84 Praxis Deep Learning mit Labor für Ingenieure

Kompetenzzuordnung	Instrumentelle Fertigkeiten
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul KOM84 kennen die Studierenden die Microsoft KI-Plattform Azure und setzen diese ein.
	Sie wenden die verschiedenen Methoden des Deep Learning an und setzen diese mit der MS Azure um.
	Weiterhin nutzen sie speziell die 3 wesentlichen KI-Netzwerke (CCN, RNN, GAN) für die eigene Problemstellung und setzen sie auf der Plattform um.
	Überdies können sie das Training von KI-Modellen durchführen und für den Anwender bereitstellen.
Inhali	Microsoft KI-Plattform
Inhalt	Dienste
	Infrastruktur
	Tools
	Erste Schritte
	Cognitive Services von Microsoft
	KI-Netzwerke für die Praxis
	Convolutional Neural Networks (CCN)
	Recurrent Neural Networks (RNN)
	Generative Adversarial Networks (GAN)
	Typische Anwendungen dieser Netze im Ingenieurbereich kennenlernen und anwenden können
	Trainieren von KI-Modellen
Voraussetzungen	Grundlagen der Linearen Algebra, Machine Learning, NoSQL Datenbanken
Modulbausteine	Fachbuch Salvaris; Dean; Tok: Deep Learning mit Microsoft Azure
	KOM810-BH Begleitheft zu Deep Learning mit MS Azure
	Onlinelabor 2 Tage (jeweils 6 Stunden)
Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	250 Stunden, 10 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Rainer Berkemer

KON80 Methoden der Produktentwicklung

Kompetenzzuordnung

Wissensvertiefung

Kompetenzziele

Nach erfolgreichem Abschluss des Moduls wissen die Studierenden wie die Produktentwicklung in Unternehmen aufgebaut ist und welche wesentlichen Aufgaben dort gelöst werden.

Sie wissen, dass die Produktentwicklung im Produktentstehungsprozess eine zentrale Rolle einnimmt und organisatorisch mit vielen Bereichen entlang der Wertschöpfungskette zusammenarbeitet.

Sie kennen die Ziele einer Produktplanung und können die Bedeutung der Produktplanung für den Unternehmenserfolg erklären.

Sie können die Teilschritte Analyse der Produktposition, Analyse der Kunden und Wettbewerber, Markt- und Technologieplanung, Ideengenerierung sowie Auswahl erläutern.

Sie können eine Anforderungsliste/Spezifikation erstellen und die notwendigen Methoden anwenden.

Sie kennen grundlegende Werkzeuge des Projektmanagements zur Verfolgung des Entwicklungsfortschritts und zur Ressourcenplanung.

Sie kennen die Arbeitsschritte der Phasen der Produktentwicklung, verstehen die notwendigen Methoden und können deren Prinzipien wiedergeben.

Sie können eine prinzipielle Gesamtlösung synthetisieren und die Methoden zur Auswahl und Bewertung von Lösungsalternativen anwenden.

Sie wissen, welche Rolle Qualität in der Produktentwicklung als Zielgröße spielt und kennen die Bedeutung der frühzeitigen Fehlererkennung und - behebung im Entwicklungsprozess.

Sie können eine Risikobetrachtung mit der Methode FMEA an einfachen Beispielen durchführen und kennen das Konzept der kontinuierlichen Verbesserung.

Sie kennen die Grundlagen der Kostenentstehung im Produktlebenslauf und können diese auf Beispiele anwenden.

Sie können die drei Strategien des Produktkostenmanagements – Kosten senken, Wertanalyse und Zielkostenentwicklung – erklären und situationsabhängig anwenden.

Sie können Methoden zur Entwicklung von Baukästen und zu verschiedenen Modularisierungstechniken erläutern und anwenden.

Sie können Prototypen hinsichtlich mehrerer Kategorien klassifizieren und den beabsichtigten Verwendungszweck in generischer Form aus der Klassifikation ableiten und die Anforderungen an Prototypen aus deren Einsatzzweck in der Produkt- oder Prozessentwicklung ableiten.

Sie können die kulturellen Herausforderungen einer global verteilten Entwicklung und Produktion abschätzen.

Inhalt

Methoden der Produktentwicklung

- Produktentwicklung in Unternehmen, Einführung
- Produktdefinition und Produktspezifikation
- Projektmanagement in der Produktentwicklung
- Entwicklung neuer Produkte

Grundlagen und Modelle

Konzeptprozess

Entwurfsprozess

- Sicherstellung der Produktqualität

Methoden zur Fehlererkennung

Qualitätskontrolle in der Praxis

- Produktsicherheit
- Produktkosten

Produktkostenmanagement

Wertanalyse

Target Costing

- Produktvarianten und Variantenmanagement
- Prototypenentwicklung
- Entwicklung im globalen Zusammenhang

Voraussetzungen	Grundlagen der Produktentwicklung und Konstruktion
Modulbausteine	ABTE160-EL Fachbuch Kirchner, Eckhard; Werkzeuge und Methoden der Produktentwicklung: Von der Idee zum erfolgreichen Produkt, 2020, Springer KON801-BH Begleitheft zum Fachbuch mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Martin Hildebrandt

MEELT Masterarbeit und Kolloquium T

Kompetenzzuordnung	Instrumentelle Fertigkeiten
Kompetenzziele	Eine komplexe Problemstellung aus einem Themenbereich des Studiengangs mit wissenschaftlichen Methoden in einem festgelegten Zeitraum weitgehend selbstgesteuert forschungs- oder anwendungsorientiert bearbeiten. Fachspezifisches Wissen und Verstehen sowie die Fähigkeiten zur Problemlösung auch in neuen und unvertrauten Situationen anwenden, die in einem breiteren oder multidisziplinären Zusammenhang mit ihrem Studienfach stehen. Wissen integrieren und mit Komplexität umgehen. Zusammenhänge des Prüfungsgebietes auf wissenschaftlichem Niveau darstellen und spezielle Fragestellungen in diese Zusammenhänge einordnen.
Inhalt	Selbstständige Bearbeitung einer Problemstellung aus einem gewählten Themenbereich in einem festgelegten Zeitraum. Lösen der Aufgabenstellung und Verfassen einer Studienabschlussarbeit (Masterarbeit) unter Anwendung wissenschaftlicher Methoden mit hohen inhaltlichen und formalen Anforderungen.
	Verteidigung der Masterarbeit, insbesondere der Schlussfolgerungen und die diesen zugrunde liegenden Informationen und Beweggründe, in klarer und eindeutiger Weise und Darstellung der Zusammenhänge des Prüfungsgebiets in einer studienabschließenden mündlichen Prüfung (Kolloquium).
Voraussetzungen	Die Voraussetzungen zur Zulassung Ihrer Masterarbeit entnehmen Sie bitte Ihrer Studien- und Prüfungsordnung.
	Zum Kolloquium wird zugelassen, wer die im Studien- und Prüfungsplan vorgeschriebenen Modulprüfungen bestanden hat und dessen Masterarbeit mit mindestens "ausreichend (4,0)" bewertet wurde.
	Bitte beachten Sie außerdem, dass zu Ihrem Studium eine Spezialisierungsrichtung/ein Wahlpflichtbereich gehört. Prüfen Sie bitte, ob Sie diese Wahl getroffen haben. Das Formular zur Wahl finden Sie im AKAD Campus an Ihrem Studienplan unter "Mehr". Bei Fragen dazu steht Ihnen die Studienbetreuung gerne zur Verfügung.
Modulbausteine	Keine.
Kompetenznachweis	Masterarbeit (29 Leistungspunkte) Mündliche Prüfung (0,75 Stunden; 1 Leistungspunkt)
Lernaufwand	725 Stunden, 29 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. DrIng. Matthias Riege

MTI80 Masterkolleg Technik und Informatik

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme sind die Studierenden in der Lage, durch die Erstellung einer wissenschaftlich fundierten schriftlichen Arbeit eine praxis- und/oder wissenschaftlich relevante Forschungsfrage des Studiengangs auf Masterniveau eigenständig zu entwickeln, zu formulieren und zu argumentieren.
	Sie sind befähigt, das gewählte Forschungsdesign sowie die gewählten theoretischen Modelle, empirischen Ansätze und methodischen Vorgehensweisen selbstständig zu begründen, kritisch zu würdigen und zu verteidigen.
	Sie erlernen durch Ausarbeitung um Umsetzung einer wissenschaftlichen Präsentation einschließlich Diskussion die Fähigkeiten zur Synthese von Theorie und Empirie und der kritischen Reflexion des gewählten Ansatzes.
Inhalt	Bearbeitung einer praktisch oder wissenschaftlich relevanten Aufgabenstellung des Studiengangs sowie Verknüpfung mit den entsprechenden Schwerpunkten/Kernbereichen.
	Angemessene inhaltliche, wissenschaftliche und didaktische Gestaltung über geeignete Methodenwahl in Abstimmung mit der mentoriellen Betreuung.
	Schriftliche und mündliche Darstellung der Ergebnisse einschließlich Fachdiskussion während des Masterkollegs mit Dozentinnen, Dozenten und Zuhörerschaft.
Voraussetzungen	Erfolgreicher Abschluss der Module der gewählten Vertiefung des Studiengangs
Modulbausteine	Onlineseminar (6 Stunden)
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. DrIng. Matthias Riege

PER68 Changemanagement und Arbeitsrecht

Kom	peten	77110	rdn	una

Wissensverbreiterung

Kompetenzziele

Nach erfolgreicher Teilnahme am Modul PER68 sind die Studierenden in der Lage, grundlegende Begriffe der Aufbau- und Prozessorganisation sowie des Changemanagements zu definieren.

Weiterhin leiten sie Kriterien zur Beurteilung organisatorischer Strukturen und Prozesse ab und entwickeln Vorschläge zur Optimierung der Aufbauund Prozessorganisation.

Die Studierenden bestimmen Gestaltungsoptionen, indem sie die Organisation analysieren und umgestalten.

Dabei werden Ursachen und Widerstände in Veränderungsprojekten identifiziert.

Weiterhin entwerfen sie Lösungsoptionen für komplexe

Veränderungsprozesse, arbeiten Techniken der organisatorischen Gestaltung aus Anwendersicht aus und erkennen Chancen und Risiken arbeitsrechtlicher Maßnahmen bei Veränderungsprozessen.

Dabei werden nach Identifikation der Konsequenzen arbeitsrechtlicher Maßnahmen Lösungsoptionen entwickelt.

Die Studierenden sind mit den Grundlagen im kollektiven und individuellen Arbeitsrecht vertraut.

Weiterhin erkennen sie rechtliche Probleme bei der Entstehung, Durchführung und Beendigung von Arbeitsverträgen insbesondere im Rahmen von Veränderungsmaßnahmen.

Darauf aufbauend arbeiten sie unternehmensspezifische Lösungen aus.

Sie sind in der Lage, die gesetzlich geregelte Mitbestimmung in Betrieben im Kontext von Changemanagement Prozessen zu erläutern.

Inhalt

Grundlagen der Organisation und Aufbauorganisation

Grundlagen der Organisationslehre

Die Aufbauorganisation (Gebildestruktur)

Prozessorganisation, Change Management und Organisationstechniken

Die Prozessorganisation

Change Management - Gestaltung des organisatorischen Wandels

Techniken der organisatorischen Gestaltung

Kollektives Arbeitsrecht II: Mitbestimmung

Die Stellung der Mitbestimmung im Arbeitsrecht

Die Bedeutung der Mitbestimmung für die Arbeitswelt

Die Betriebsverfassung

Angelegenheiten betrieblicher Mitbestimmung

Die Unternehmensverfassung

Personalvertretung

Das Einzelarbeitsverhältnis

Grundlegendes zum Einstieg

Wer ist Arbeitnehmer

Welche Formen von Arbeitsverhältnissen gibt es?

Rechtliche Fragen bei der Einstellung eines neuen Mitarbeiters

Rechte und Pflichten aus dem Arbeitsvertrag

Wie kann ein Arbeitsverhältnis beendet werden?

Voraussetzungen	Grundlagen der Unternehmensführung; Grundlagen der allgemeinen BWL; Grundwissen über die deutsche Rechtsordnung sowie im Vertragsrecht
Modulbausteine	UFU501 Studienbrief Grundlagen der Organisation und Aufbauorganisation mit Onlineübung
	UFU502 Studienbrief Prozessorganisation, Change Management und Organisationstechniken mit Onlineübung
	PER602 Studienbrief Kollektives Arbeitsrecht II: Mitbestimmung
	PER603 Studienbrief Das Einzelarbeitsverhältnis
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Wolfgang Bohlen

PWS81 Projektwerkstatt

Kompetenzzuordnung	Systemische Fertigkeiten
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul PWS81 sind die Studierenden in der Lage, im Team und mit Methoden eines modernen Projektmanagements Aufgabenstellungen mit einem wissenschaftlichen Anspruch auf Masterniveau problem- und zielorientiert zu lösen.
	Darüber hinaus wird die Fähigkeit vermittelt, geeignete Werkzeuge der Kooperation und Kommunikation einzusetzen sowie Ergebnisse zielgerichtet und nach den Regeln der Wissenschaftlichkeit zu dokumentieren und präsentieren.
	Dabei wird das erworbene – interdisziplinäre – Fachwissen umgesetzt und angewendet.
	Doorhoitung oines Droicktoutgeba
Inhalt	Bearbeitung einer Projektaufgabe selbstständig sowie in Gruppen
	unter Verwendung verschiedener Methoden und Diskurse;
	Beispiele: Modell- oder Konzeptentwicklung, Optimierungsempfehlungen, Untersuchungen, empirische Forschungsarbeit, Gestaltungsempfehlungen usw.
	Gegenstand der Projektarbeiten: Analyse, Planung, Konzeption, Gestaltung, Entwicklung, Einsatz und Bewertung von Lösungen für den Praxiseinsatz unter Berücksichtigung der Kompetenzfelder der Studiengangsschwerpunkte.
Voraussetzungen	Keine.
Modulbausteine	Keine.
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Wolfgang Bohlen

RER82 Requirements-Engineering

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul RER82 können die Studierenden die Anforderungen an ein technisches Produkt ermitteln, dokumentieren und verwalten.
	Sie beherrschen insbesondere die Modellierungssprache UML.
 Inhalt	Grundlagen Requirements Engineering
	Requirements Engineering
	Tätigkeiten im Requirements Engineering
	Anforderungen oder Requirements
	Systeme
	Methoden und Prozesse
	Anforderungsfeststellung
	Warum sind Anforderungen wichtig?
	Requirements ermitteln
	Requirements analysieren und modellieren
	Requirements spezifizieren
	Requirements verifizieren und validieren
	Anforderungsbearbeitung
	Requirements vereinbaren
	Requirements verwalten
	Werkzeuge für das Requirements Engineering
Voraussetzungen	Kenntnisse zu Systems Engineering
Modulbausteine	RER811 Studienbrief Grundlagen Requirements Engineering mit Onlineübung
	RER812 Studienbrief Anforderungsfeststellung mit Onlineübung
	RER813 Studienbrief Anforderungsbearbeitung mit Onlineübung
	ABTE011-EL Fachbuch Staud: Unternehmensmodellierung –
	Objektorientierte Theorie und Praxis mit UML 2.0
	Onlineseminar (1 Stunde)
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch

RER83 Risikomanagement

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul RER83 können die Studierenden die Risiken eines technischen Projektes oder Produktes ermitteln, dokumentieren und verwalten.
	Sie können risikobasierte und risikoorientierte Management- Entscheidungen treffen.
India I	Grundlagen des technischen Risikomanagements
Inhalt	Warum Risikomanagement?
	Begriffsdefinitionen
	Risikomanagement und die ISO 31000
	Risikomanagement-Prozess
	Risikomanagement-Prozessschritt: Zusammenhang herstellen
	Risikomanagement von technischen Prozessen
	Risikoidentifikation
	Risikoanalyse
	Risikobewertung
	Risikobewältigung
	Überwachung
	Risikokommunikation
	Beispiel Kaffeemaschine
	Risikofaktoren und Risikomanagementsysteme in der Technik
	Frühwarn- und Prognosesysteme für Unternehmensplanung und Risikomanagement
	Risikomanagement in der Serienproduktion
	Risikomanagement in Turnkey-Projekten
Voraussetzungen	Kenntnisse zu Projektmanagement
Modulbausteine	RER814 Studienbrief Grundlagen des technischen Risikomanagements mit Onlineübung
	RER815 Studienbrief Risikomanagement von technischen Prozessen mit Onlineübung
	RER816 Studienbrief Risikofaktoren und Risikomanagementsysteme in der Technik mit Onlineübung
	ABTE119-EL Fachbuch Kersten; Klett; Reuter; Schröder: IT-Sicherheitsmanagement nach der neuen ISO 27001 – ISMS – Risiken – Kennziffern – Controls
	Onlineseminar (1 Stunde)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
	125 Stunden, 5 Leistungspunkte

Sprache	Deutsch
Studienleiter	Prof. Dr. Martin Kaloudis

ROB60 Maschinelles Lernen

	ROBOU Maschinelles Lernen
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul ROB60 kennen die Studierenden künstliche neuronale Netze (KNN) sowie deren biologisches Vorbild und wissen diese zu analysieren.
	Damit zusammenhängend verstehen sie die Leistungsfähigkeit von KNN und dabei insbesondere der Multilayer-Perzeptoren und können diese beurteilen.
	Bei der Entwicklung und praktischen Umsetzung von Lernalgorithmen sind die Studierenden in der Lage, die Ergebnisse kritisch zu hinterfragen.
	Überdies können die Klassifikations-Probleme mit KNN-Modellen beschreiben und lösen.
Inhalt	Neuronale Netze I
IIIIait	Biologische Neuronale Netze
	Historischer Überblick
	Künstliche neuronale Netze
	Das Lernen neuronaler Netze
	Neuronale Netze II
	Die McCulloch-Pitts-Zelle
	Das Hebbsche Gesetz
	Das Perzeptron
	Adaline
	Die Delta- oder Widrow-Hoff-Lernregel
	Neuronale Netze III
	Backpropagation
	Bidirektionale Assoziativspeicher
	Hopfield-Netze
	Selbstorganisierende Karten (SOM)
	ART – Adaptive Resonance Theory
	Maschinelles Lernen mit Python
	Lernalgorithmen
	Lernalgorithmen für die Klassifizierung
	Auswahl der Trainingsdaten
	Dimensionsreduktion
	Modellbewertung
	Beispiele für Lernalgorithmen
	Implementierung von neuronalen Netzen
	Techniken zur Implementierung
	Einsatz von TensorFlow
	Funktionsweise von TensorFlow
	Modellierung rekurrenter neuronaler Netze
Voraussetzungen	Mathematische Grundlagen der linearen Algebra
	Grundlagen in Python

Grundlagen in Python

Modulbausteine

SYD811 Studienbrief Neuronale Netze I mit Onlineübung SYD812 Studienbrief Neuronale Netze II mit Onlineübung SYD813 Studienbrief Neuronale Netze III mit Onlineübung

ABTE094-EL Fachbuch Raschka; Mirjalili: Machine Learning mit Python und Scikit-learn und TensorFlow – Das umfassende Praxis-Handbuch für Data Science, Deep Learning und Predictive Analytics

ROB601-BH Begleitheft zum Fachbuch

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Martin Prause

ROB82 Robotik

Nach erfolgreicher Teilnahme am Modul ROB82 können die Studierenden unterschiedliche Roboter unterscheiden und kennen und beurteilen deren typische Einsatzbereiche. Sie können Roboter und Peripherie auswählen und Regelungs- und Steuerungskonzepte analysieren und beurteilen. Zudem Iernen sie Grundlagen der Roboterprogrammierung kennen.
unterschiedliche Roboter unterscheiden und kennen und beurteilen deren typische Einsatzbereiche. Sie können Roboter und Peripherie auswählen und Regelungs- und Steuerungskonzepte analysieren und beurteilen.
Steuerungskonzepte analysieren und beurteilen.
Zudem lernen sie Grundlagen der Roboterprogrammierung kennen.
Einführung in die Robotik
Einführung in die Robotertechnik
Grundlagen
Die Steuerung
Endeffektoren
Sensorsysteme
Peripherie
Sicherheitseinrichtungen
Roboteranwendungen
Roboter-Kinematik
Roboterkinematiken
Maschinenunabhängige Beschreibung räumlicher Bewegungsbahnen
Herleitung von Transformationen für serielle Roboterkinematiken
Nutzung der Koordinatensysteme bei Industrierobotern
Roboter-Dynamik und -Regelung
Modellierung mechanischer Systeme
Ansatz Euler-Lagrange
Newton-Euler Methode
Simulationswerkzeuge für Roboter
Regelung von Robotern
Bahnplanung und Programmierung
Bahnplanung
Roboter-Roboter-Kooperation
Anwendungsprogrammierung von Robotern
KRL – Eine Roboterprogrammiersprache
Neue Programmierverfahren für Industrieroboter
Lineare Algebra
Differenzial- und Integralrechnung
ROB101 Studienbrief Einführung in die Robotik mit Onlineübung
ROB102 Studienbrief Roboter-Kinematik mit Onlineübung
ROB103 Studienbrief Roboter-Dynamik und -Regelung mit Onlineübung ROB104 Studienbrief Bahnplanung und Programmierung mit
Onlineübung

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Frantisek Jelenciak

ROB83 Labor Robotik

Kompetenzzuordnung

Instrumentelle Fertigkeiten, Mitgestaltung, Systemische Fertigkeiten

Kompetenzziele

Im Modul ROB83 erwerben die Studierenden multidisziplinäre Kenntnisse der Regelungstechnik, der Navigation und der Robotik. Die Studierenden werden sich nicht nur einen theoretischen Überblick aneignen, sondern transferieren ihr erworbenes Wissen außerdem in die Praxis.

Im Themenbereich Regelungstechnik werden die Studierenden in der Lage sein, ausgewählte Prozesse unter den Aspekten der System- und Regelungstheorie (Stabilität) mathematisch zu modellieren sowie Regler präzise zu entwerfen, um komplexe Systeme effektiv zu steuern.

Im Themenbereich Navigation werden die Studierenden mit den theoretischen Aspekten von Navigation, Leitsystemen und Koordinatensystemen vertraut gemacht. Sie werden Transformationen zwischen Koordinatensystemen realisieren und eigene Animationen und Simulationen zur Veranschaulichung von Koordinatensystemen entwickeln und beurteilen diese kritisch. Die Studierenden erhalten ein tiefgreifendes Verständnis über Objekte im Koordinatenraum und können diese mathematisch korrekt beschreiben. Des Weiteren werden die Studierenden die Begriffe DCM, Euler-Winkel, 'Gimbal Lock'-Effekt und Quaternionen erklären und sicher anwenden können.

Im Themenbereich der Robotik werden die Studierenden den Roboterarm NIRYOP NED (6-Achse) sicher verwenden können, um Objekte zu manipulieren und praktische Anwendungen umzusetzen. Sie setzen den Roboterarm in Verbindung mit Bildverarbeitung (Vision-Set) ein, um eigenständig Lösungen für grundlegende Probleme der Robotik zu entwickeln. Die Studierenden analysieren und bewerten die Interaktion des Roboters mit anderen Systemen (z. B. Bildverarbeitung) kritisch und entwickeln systematische Ansätze zur Verbesserung der Gesamtleistung. Sie praktizieren den Umgang mit Matlab-Simulink und NIRYO-Studio, um robotische Prozesse zu planen, zu simulieren und zu optimieren. Sie bewerten praktische Anwendungen der Robotik, transferieren ihr theoretisches Wissen in industrielle Kontexte und entwerfen innovative Lösungen für reale Problemstellungen. Die Studierenden gestalten aktiv Prozesse zur Lösung robotischer Aufgaben und entwickeln Handlungsstrategien, um die Robotik effizient in industrielle Abläufe zu integrieren.

Das Modul bietet somit einen multidisziplinären Überblick über die Grundlagen der Problematiken der Robotik. Hierzu eignen sich die Studierenden theoretisches Wissen und praktische Fertigkeiten an, die für praktische Anwendungen in der Industrie unerlässlich sind. Sie gestalten aktiv eigene robotische Prozesse in Matlab-Simulink und NIRYO-Studio zur Problemlösung realer industrieller Probleme und beurteilen diese kritisch.

Inhalt

Zwei Flüssigkeitsbehälter ohne Interaktion und Gleichstrommotor mit Permanentmagnet

- o Nichtlineares mathematisches Modell, Größenverteilung, Stationärer Zustand, Linearisierung, Regelung, Stabilität und Reglerentwurf Koordinatensysteme und Orientierung von Körpern
- o Interpretation der DCM mithilfe von Eulerschen Winkeln
- o Interpretation der Eulerschen Winkeln mithilfe von Winkelgeschwindigkeit
- o "Gimbal Lock"-Effekt
- o Eigenschaften und Normalisierung von Eulerschen Winkeln

- o Interpretation der DCM mit Hilfe von Quaternionen
- o Schlussfolgerungen zu den Interpretationsmöglichkeiten der DCM
- o Transformationen zwischen den Koordinatensystemen (ECEF, NED, WGS84)

NIRYO NED (6-Achse) Roboter, Matlab und NIRYO-STUDIO – Überblick und Aufgaben

- o Free Motion
- o Vision-Set
- o Simulation der Roboterarmpose und der Einsatz inverser Kinematik

Voraussetzungen	ROB82
Modulbausteine	ABTE199-EL E-Book Spanner: Robotik und künstliche Intelligenz, 2019 mit
	ROB830-BH Begleitheft zum Fachbuch Robotik und Künstliche Intelligenz, 2019
	ROB831 Studienbrief Robotik - Arbeitshandbuch zum Labor mit Matlab-Simulink Files
	Labor (2 Tage)
Kompetenznachweis	Laborbericht
Lernaufwand	250 Stunden, 10 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Frantisek Jelenciak

SB520B Brückenkurs Mathematik und 1 Physik für Ingenieure

	5008 Brückenkurs 2 Mathematik für Ingenieure (2 Tage / 12 Std.) 5005 Brückenkurs Physik für Ingenieure (3 Tage / 18 Std.)
Modulbausteine	5007 Brückenkurs 1 Mathematik für Ingenieure (1 Tag/ 6 Std.)
-	Die Kurse sollen nicht am Stück belegt werden. Zudem müssen die Mathekurse 5007 und 5008 vor dem Physikkurs 5005 absolviert werden.
Voraussetzungen	Schulmathematik, Schulphysik
	Atomphysik (Atombau, Übergänge, Leitungsmechanismen in Festkörpern
	freie und erzwungene Schwingung, Analogie mechanischer und elektrischer Schwingungen, Wellenphänomene)
	und magnetische Felder) Schwingungen und Wellen (Kinematik und Dynamik von Schwingungen,
	Elektrizitätslehre (elektrische Grundgrößen, elektrischer Widerstand, Ohmsches Gesetz, einfache Netzwerke/Kirchhoffsche Regeln, elektrische und magnetische Felder)
	Wärmelehre/Thermodynamik (Konzept der Thermodynamik, Thermische Eigenschaften physikalischer Körper, Hauptsätze der Thermodynamik, Thermodynamische Prozesse)
	Mechanik (Kinematik und Dynamik der Massenpunkte)
	Elementare und allgemeine Grundlagen (Arbeitsweise der Physik, Physikalische Größen, Grundkonzepte)
	5005 Brückenkurs Physik für Ingenieure
	Integralrechnung)
	Determinanten, Gleichungssysteme) Infinitesimalrechnung (einfachste Differential- und einfachste
	Funktionen Lineare Algebra (elementare Vektoralgebra, Elementares zu Matrizen und
	Rechenoperationen) Gleichungen/Ungleichungen/Betragsgleichungen
midit	Elementare Grundlagen (Mengen, Zahlen, elementare
Inhalt	5007 und 5008 Brückenkurs Mathematik für Ingenieure
	vermittatig von otrategien zum Losen von Friysik-Aufgaben
	erfolgreichen Ingenieurstudiums Vermittlung von Strategien zum Lösen von Physik-Aufgaben
Kompetenzziele	Auffrischung der Schulkenntnisse der Physik als Grundlage eines
	Verbesserung der Rechenfertigkeit beim Lösen von Aufgaben 5005 Brückenkurs Physik für Ingenieure
	Vermittlung von Methoden zum Lösen von Aufgaben
	Grundlage eines erfolgreichen Ingenieurstudiums
	Auffrischung der Schulkenntnisse der elementaren Mathematik als
	5007 und 5008 Brückenkurse Mathematik für Ingenieure

Kompetenznachweis	Keiner.
Lernaufwand	0 Stunden, 0 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Sebastian Bauer

SQF61 Schlüsselqualifikationen für Studium und Beruf

Kompetenzzuordnung	Systemische Fertigkeiten
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul SQF61 sind die Studierenden in der Lage, Implikationen des Methodenpluralismus und des kritischen Rationalismus für eine konkrete (empirische) Forschung abzuleiten.
	Weiterhin sind sie fähig, ein Forschungsproblem adäquat zu formulieren und daraus eine Strategie und das für ihre Umsetzung erforderliche Instrumentarium herzuleiten.
	Hierauf werden die "Werkzeuge" der Datenerhebung (Beobachtung, Befragung und Inhaltsanalyse) problembezogen angewandt und umgesetzt.
	Weiterhin beherrschen die Studierenden die Datenauswertung mit der Planung von multivarianten Analysemethoden sowie die Strukturierung der notwendigen Arbeitsschritte.
	Sie analysieren die Gütekriterien für Datengewinnung und schätzen die Probleme der einzelnen Methoden ab.
Inhalt	Grundlagen der Wissenschaftstheorie verstehen
IIIIait	Wissenschaftstheorie – Eine Einführung
	Wissenschaftliche Methoden
	Ein Forschungsprojekt planen
	Forschungsplanung – Erste Arbeitsschritte
	Operationalisierung
	Auswahlverfahren
	Ein Forschungsprojekt durchführen und auswerten
	Forschungsdurchführung
	Forschungsauswertung
Voraussetzungen	Grundkenntnisse in Statistik und Kenntnisse in MS-Excel
Modulbausteine	Orientierungswerkstatt (drei Onlineseminare: Studieren bei AKAD 1,5 Std.; Wissenschaftliches Arbeiten 6 Std.; Folgeseminar Wiss. Arbeiten 2 Std.)
	SQF601 Studienbrief Grundlagen der Wissenschaftstheorie verstehen
	SQF602 Studienbrief Ein Forschungsprojekt planen
	SQF603 Studienbrief Ein Forschungsprojekt durchführen und auswerten
	SQFA604-EL Hörbuch zu den Studienbriefen SQF601-SQF603
	Einsendeaufgaben zu den Studienbriefen SQF601-603
	SQLD302-VH Download Vorgaben für wissenschaftliche Studien- und Abschlussarbeiten bei AKAD
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte

Sprache	Deutsch
Studienleiter	Prof. Dr. Marianne Blumentritt

SWE65 Software Engineering 1

Kompetenzzuordnung	Instrumentelle Fertigkeiten	
Kompetenzziele	Nach der erfolgreichen Teilnahme am Modul SWE65 haben die Studierenden einen Überblick über die Prinzipien des Software Engineering, übliche Vorgehensmodelle und die wichtigsten Software Engineering Techniken.	
	Sie können übliche Modelle wie UML-Diagramme und Entscheidungstabellen auf Beispiele anwenden.	
Inhalt	Funktionsorientierte Softwareentwicklung	
iiiiait	Anforderungen an die SW-Entwicklung	
	Ansätze, Systematik und Werkzeuge der SW-Entwicklung	
	Elemente der funktions- und datenorientierten SW-Entwicklung	
	Grundsätze funktionsorientierter SW-Entwicklung	
	Methoden der funktionsorientierten SW-Entwicklung	
	Objektorientierte Softwareentwicklung	
	Objektorientierung	
	Objektorientierte Programmierung: UML	
	Objektorientierter Entwicklungsprozess	
	Komponentenbasierte Softwareentwicklung	
	Serviceorientierte Softwareentwicklung	
	Werkzeuge und Entwicklungsumgebungen	
	Serviceorientierte Architektur (SOA)	
	Vorgehensmodelle und Standards	
	Prinzipien und Techniken des Software Engineerings	
	Software-Engineering-Prinzipien	
	SWE BOK	
	Qualitätssicherung	
Voraussetzungen	Programmiererfahrung in einer objektorientierten Programmiersprache	
Modulbausteine	SWE203 Studienbrief Funktionsorientierte Softwareentwicklung mit Onlineübung	
	SWE204 Studienbrief Objektorientierte Softwareentwicklung mit Onlineübung	
	SWE651-RG Research-Guide Vorgehensmodelle und Standards	
	SWE652 Studienbrief Prinzipien und Techniken des Software Engineerings mit Onlineübung	
	Onlineseminar (1 Stunde)	
Kompetenznachweis	Assignment	
Lernaufwand	125 Stunden, 5 Leistungspunkte	
Sprache	Deutsch	

Studienleiter

Prof. Dr.-Ing. Matthias Riege

SYE60 Systems Engineering

Kompetenzzuordnung	Instrumentelle Fertigkeiten		
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul SYE60 können die Studierenden den Entwicklungsprozess für ein technisches System nach gängigen Systems Engineering Standards planen, gestalten und durchführen.		
	Darüber hinaus haben sie verstanden, was ein System ist, und können Systeme und die darin stattfindende Signalverarbeitung modellieren und mathematisch beschreiben.		
Inhalt	Der Systembegriff		
innait	Motivation		
	Was ist ein System?		
	Was gehört zu einem System?		
	Was zeichnet das Systemverhalten aus?		
	Wie kann man Systeme strukturieren?		
	Technische Systeme		
	Einführung		
	Signale		
	Systeme		
	Ausblick in die mathematische Systemanalyse		
	Systems Engineering Standards		
	ISO 26262		
	SE BOK (Systems Engineering Body of Knowledge)		
	ISO/IEC 15288		
	ISO/IEC DTR 16337		
	Systems Engineering Handbook (INCOSE)		
	Fallstudie		
	nach ISO15288 und 26262		
Voraussetzungen	Kenntnisse zum Thema Software- oder IT-Architektur		
Modulbausteine	AST811 Studienbrief Der Systembegriff mit Onlineübung AST815 Studienbrief Technische Systeme mit Onlineübung		
	Labor (8 Stunden)		
Kompetenznachweis	Assignment (Laborbericht)		
Lernaufwand	125 Stunden, 5 Leistungspunkte		
Sprache	Deutsch		
Studienleiter	Prof. DrIng. Matthias Riege		

SYE80 Vertiefung System Engineering

Kompetenzzuordnung	Instrumentelle Fertigkeiten
Kompeterizzuorunung	<u> </u>
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul SYE80 haben die Studierenden vertieftes Wissen bezüglich Qualitätsmanagement und Sicherheit (Safety).
	Sie können ein Sicherheitskonzept erstellen und das Qualitätsmanagement für ein kritisches System organisieren.
Inhalt	Qualitätsphilosophien und Methoden im Qualitätsmanagement
	Geschichte des Qualitätswesens
	William Edward Deming und seine Qualitätsphilosophie
	Ausgewählte Methoden und Werkzeuge des Qualitätsmanagements
	Qualitätsnomen, QM-Systeme und gesellschaftliche Aspekte
	Qualitätsnormen
	Auditierung und Zertifizierung
	VDI/VDE/DGQ 2618
	QM-Systeme, TQM und Excellence-Modelle
	Juristische Aspekte
Voraussetzungen	Kenntnis des System-Begriffes und gängiger Systems Engineering Standards
Modulbausteine	QUM101 Studienbrief Qualitätsphilosophien und Methoden im Qualitätsmanagement mit Onlineübung
	QUM103 Studienbrief Qualitätsnormen, QM-Systeme und gesellschaftliche Aspekte mit Onlineübung
	Labor (8 Stunden)
Kompetenznachweis	Assignment
Lernaufwand 125 Stunden, 5 Leistungspunkte Sprache Deutsch	

UFM75 Informations- und Wissensmanagement

Kompetenzzuordnung	Wissensvertiefung		
Kompetenzziele	Nach erfolgreichem Abschluss des Moduls UFM75 können die Studierenden die Theorien und Konzepte des Informations- und Wissensmanagements darlegen sowie Verarbeitungsfolgen von Daten und Informationen zu Wissen beschreiben und Anwendungsbeispiele analysieren;		
	Sie können den Medieneinsatz in Szenarien der Wissensverarbeitung und -kommunikation strukturieren und planen.		
	Ferner können sie Konzeptelemente des semantischen Wissensmanagements bestimmen und Einsatzszenarien und technische Besonderheiten erläutern.		
	Sie erfassen die Praxis des Wissensmanagements und leiten Vorschläge für einen Einsatz von Werkzeugen und Architekturen des Informationsund Wissensmanagements zu konkreten Problemstellungen ab.		
	Die Studierenden können Inhaltselemente von lernprozessorientiertem Wissensmanagement mit E-Learning kombinieren und konkrete Managementanforderungen im Zusammenhang mit der Implementierung von Wissensmanagementlösungen strategisch und operativ entwickeln und gestalten.		
Inhalt	Informationsmanagement		
illiait	Einführung in das Informationsmanagement		
	Das Modell des Informationsmanagements nach Krcmar		
	Wissensmanagement		
	Einführung in das Wissensmanagement		
	Wissensmanagement in Modellen		
	Systeme und Technologien fürs Wissensmanagement		
	Semantisches Wissensmanagement		
	Individuelles Wissensmanagement		
	Wissensmanagement und Lernen		
	Wissensmanagement, Lernen und lernende Organisation		
	Managementkompetenz für Wissensmanager		
	Wissensarbeit in der Organisation		
	Wissensarbeit als Herausforderung im Wissensmanagement		
	Management von Wissensarbeit		
Voraussetzungen	Kenntnisse der Organisation und Unternehmensentwicklung		
Modulbausteine	UFU619 Studienbrief Informations- und Wissensmanagement 1 mit Onlineübung		
	UFU620 Studienbrief Informations- und Wissensmanagement 2 mit Onlineübung		
	UFU621 Studienbrief Individuelles Wissensmanagement mit Onlineübung		
	UFU622 Studienbrief Managementkompetenz für Wissensmanager mit Onlineübung		

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Tobias Specker

UFM87 Produkt- und Prozessmanagement für Industrie 4.0

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul UFM87 können die Studierenden das Instrument der Wertkette nach M. E. Porter bei der strategischen Geschäftsprozessanalyse einsetzen.
	Sie können informationstechnische Aspekte der Prozessgestaltung einordnen und situationsgerecht beurteilen.
	Weiterhin sind sie in der Lage, Instrumente zur Analyse und Beurteilung von Geschäftsprozessen zu erläutern und zielorientiert anzuwenden.
	Sie können bei der Analyse und (prozessorientierten) Umgestaltung von Organisationen mitarbeiten, insbesondere beim Business Process Reengineering und Grundlagen, Ziele und Prozess des Produktmanagements verdeutlichen.
	Die Studierenden sind in der Lage, den Prozess und die Organisation des Produktmanagements zu gestalten und auf einzelne Gestaltungsobjekte konkret anzuwenden.
	Zudem können sie Besonderheiten des Produkt- und Prozessmanagements für Industrie 4.0 ableiten und bei eigenen Aufgaben berücksichtigen.
Inh alt	Grundlagen, Ziele und Prozess des Produktmanagements
Inhalt	Entwicklungslinien des Produktmanagements
	Ziele, Aufgaben und Funktionen des Produktmanagements
	Prozess des Produktmanagements
	Organisation, Träger und Gestaltungsfelder des Produktmanagements
	Organisation und Trägerschaft des Produktmanagements
	Gestaltungsfelder des Produktmanagements
	Fallbeispiele zum Produktmanagement
	Aktuelle Trends und Ausblick
	Modellierung und Dokumentation von Geschäftsprozessen
	Modelle, Modellierung
	Prozessmodelle, Prozessmodellierung
	Ist- und Sollmodellierung
	Methode EPK
	Methode BPMN
	Vertikale Dimension der Prozessmodellierung
	Geschäftsprozessmanagement und Digitalisierung
	Geschäftsprozessmanagement und digitale Transformation - eine Einführung
	Enterprise-Architecture-Management
	Business-Process-Management-Systeme
	Robotic Process-Automation
	Process-Mining
	Industrie 4.0 – Strategisches Technologiemanagement
	Gründe für eine Innovationsstrategie

Verändernde Rahmenbedingungen

Schritte der Strategieentwicklung

Industrie 4.0 – Evaluierung der Relevanz für Unternehmen mit physischen Angeboten

Bedeutung von Industrie 4.0

Ableitung von Handlungsbedarf

Anwendungsbeispiele aus der Industrie

Industrie 4.0 – Neue Produkte verändern die Welt und die Unternehmen

Erweiterter Funktionsumfang

Vernetzung und Kommunikation

Daten

Mensch-Maschine-Interaktion

Neuartiger Produktentwicklungsprozess

Veränderte Wettbewerbssituation

Smarte Art der Produktion

Smart Factory

Integration und IT

Neue Rolle des Menschen in der Produktion

Industrie 4.0 – Fertigungsprozesse und deren Steuerung in Cyber-Physischen-Systemen

Cyber-Physische Systeme

Prozessanalyse und Ergebnisse der Fallstudienbetrachtung

Voraussetzungen

Grundlagen der Betriebswirtschaftslehre und Unternehmensführung

Modulbausteine

UFU607 Studienbrief Grundlagen, Ziele und Prozess des

Produktmanagements mit Onlineübung

UFU608 Studienbrief Organisation, Träger und Gestaltungsfelder des Produktmanagements mit **Onlineübung**

ORG202 Studienbrief Modellierung und Dokumentation von Geschäftsprozessen mit **Onlineübung**

ORG203 Studienbrief Geschäftsprozessmanagement und Digitalisierung mit **Onlineübung**

ABWI034-EL Fachbuch Granig, Peter; Hartlieb, Erich; Heiden, Bernhard (Hrsg.): Mit Innovationsmanagement zu Industrie 4.0. Grundlagen, Strategien, Erfolgsfaktoren und Praxisbeispiele. Kapitel 2, 7 und 14. E-Book

ABWI035-EL Fachbuch Huber, Walter: Industrie 4.0 kompakt – Wie Technologie unsere Wirtschaft und unsere Unternehmen verändern. Transformation und Veränderung des gesamten Unternehmens. Kapitel 6 und 7. E-Book

Kompetenznachweis Assignment	
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Tobias Specker

UFM88 Digitalisierung und ethische Verantwortung von Unternehmen

Kompetenzzuordnung	Wissensvertiefung	
Kompetenzziele	Nach erfolgreicher Teilnahme am Modul UFM88 sind die Studierenden in der Lage, erweitertes und vertieftes Wissen hinsichtlich ethisch relevanter Auswirkungen auf Arbeitsbedingungen und soziale Beziehungen abzuschätzen.	
	Dies impliziert auch die Fähigkeit, kritische Einschätzungen zur Digitalisierung zu erläutern und zu beurteilen.	
	Die Studierenden kennen die Guidelines der EU für Ansätze vertrauenswürdiger Intelligenz und leiten dadurch die Umsetzung in die betriebliche Praxis ab.	
	Darüber hinaus werden wirtschaftsethische Grundsätze auf Beispiele komplexer und konkreter Unternehmens- und Managementsituationen analysiert und angewandt.	
	Weiterhin werden Kenntnisse vermittelt, um die Auswirkungen des gesellschaftlichen Wertewandels auf das Management von Unternehmen und auf die Personalführung kritisch zu reflektieren.	
Inholé	Was ist der Mensch im digitalen Zeitalter	
Inhalt	Was ist der Mensch? Abriss ideengeschichtlicher Entwürfe an Wendepunkten der Menschheitsgeschichte	
	Was bedeutet die Digitalisierung für den Menschen?	
	Die Rolle des Gewissens in der Digitalisierung	
	Bildung als Schlüssel für sinnvolles menschliches Leben im digitalen Zeitalter	
	Kritische Einschätzungen zur Digitalisierung	
	Der Wunsch, Gutes zu tun – heute ein Risiko?	
	Ständig online – wie das Internet unser Leben verändert	
	Verbale Entgleisungen auf Facebook mit tödlichen Folgen	
	Bequemlichkeit 4.0 – die schrittweise Evolution zur Häppchengesellschaf	
	Sucht nach Neuem und die Angst vor Veränderung	
	Angriff von Social Bots und Trollarmeen	
	Überforderung durch Datenflut	
	Philosophie und Ökonomie – Ethik der Rahmenordnung	
	Die philosophischen Grundlagen der Ökonomie und ihr wirtschaftsgeschichtlicher Hintergrund	
	Die Epochen der abendländischen Philosophie und die wirtschaftswissenschaftlichen Theorien	
	Moral, Ethik und angewandte Ethik	
	Die Wirtschaftsethik	
	Ethik korporativen Handelns	
	Korporative Verantwortung	
	Ethik korporativen Handelns	
	Fallbeispiele zum ethischen Verhalten von Unternehmen	
	Digitalisierung und ethische Verantwortung von Unternehmen	
	Das Unternehmen als Ansammlung von Menschen	

Der Zusammenhang zwischen Sein und Sollen im Unternehmen Das Unternehmensgewissen als Ausdruck eines Dialogs unter Mitarbeitern

Klassische und neue unternehmensethische Lösungsansätze und ihre Schwächen bei der Wahrnehmung ethischer Verantwortung von Unternehmen in einer digitalisierten Wirtschaft

Guideline (Draft-Version) der EU für Ansätze vertrauenswürdiger Künstlicher Intelligenz

Integration von Praxiserfahrung und des ersten akademischen **Abschlusses**

Die weiterführende Integration bereits vorhandener Praxiserfahrung, die durch das Erststudium erworbenen akademischen Kenntnisse und Kompetenzen sowie die kritische Reflexion aktueller Praxiserfahrungen wird im Modul durch den Kompetenznachweis Assignment (Bezug zur Empirie/Fallbeispiel/Fallstudie) gewährleistet und unterstützt.

Vor	aussetzungen	
V UI	aussetzunuen	

Prinzipien der Digitalisierung

Grundprinzipien der Wirtschaftsethik

Modulbausteine

Sprache

ABWI036-EL E-Book Fürst, R.: Gestaltung und Management der digitalen Transformation. Ökonomische, kulturelle, gesellschaftliche und technologische Perspektiven

Guidelines der EU The European Commission's High Level Expert Group on Artificial Intelligence: Draft Ethics Guidelines for Trustworthy Al. Working Document for stakeholder's consultation (https://ec.europa.eu/digital-single-market/en/news/draft-ethics-guidelines-

trustworthy-ai)

ABWI037-EL E-Book Ternès, A.: Die Digitalisierung frisst ihre User. Der digitale Wahnsinn und wie sie ihn beherrschen

DML627 Studienbrief Digitalisierung und ethische Verantwortung von Unternehmen mit Onlineübung

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte

Assignment

Deutsch

Studienleiter Prof. Dr. Ulrich Kreutle